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Audio
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Data-driven Statistical Modeling
Abundant Computing Power
DL for Audio Synthesis!
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Generative Synth
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I timbre → “difference” between a violin and flute A4

I pitch → fundamental frequency

I loudness → intensity (energy)
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Spectral Modeling Synthesis

I Introduced by [Serra, 1989, Serra et al., 1997]

I Idea is: x = xsine + xnoise = h(t) + r(t)

h(t) + r(t) HpR
h(t)

r(t)

I Our parametric representation is a Source-Filter inspired
representation, building on top of the HpR model
[Caetano and Rodet, 2012, Caetano and Rodet, 2013]
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Generative Models for Audio

I Compact representation of data space1, simultaneously
allowing us to sample from it

I This ‘Compact’ representation → Latent Space

I Neural Audio Synthesis [Engel et al., 2017]

1https://openai.com/blog/generative-models/
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Generative Models

I Sequential/Autoregressive Modeling: LSTMs, WaveNet
[Hochreiter and Schmidhuber, 1997, Oord et al., 2016]

I Generative Adversarial Networks [Goodfellow et al., 2014]
I Framewise Autoencoding

- Autoencoders (AE) [Hinton and Salakhutdinov, 2006]
Optimal (MSE) lower dimensional representation of input

- Variational AEs (VAE) [Kingma and Welling, 2013]
Enforce a prior on the lower dimensional representation

- Conditional VAEs (CVAE) [Doersch, 2016, Sohn et al., 2015]
Enforce a ‘conditional’ prior . . .
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Our Nearest Neighbors

I [Sarroff and Casey, 2014] frame-wise reconstruction of
short-time magnitude spectra with autoencoders
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I [Roche et al., 2018] tried out autoencoder architectures,
analysis of ‘audio latent space’

I [Esling et al., 2018] regularized this latent space for better
control over timbre of synthesized instruments
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Our Nearest Neighbors

I Frame-wise analysis-synthesis based reconstruction
→ no temporality and phase estimation issues

I [Engel et al., 2017] inspired by Wavenets [Oord et al., 2016]
autoregressive modeling capablities for speech extended it to
musical instrument synthesis

I [Wyse, 2018] proposed generating audio samples with RNN’s,
albeit by conditioning the waveform samples on additional
parameters like pitch, velocity (loudness) and instrument class

I [Défossez et al., 2018] proposed frame-by-frame waveform
generation with LSTMs
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Why Parametric?

I Mostly use audio in raw form (waveform/spectrum)

- waveform: Complicated architectures, lots of training data,
long training times

- spectrum: Phase estimation

I Parametric?

- model a reduced parameter space over waveform/spectrum
- neural network to generatively model parametric space →

simple architecture, less data, better generalizability and high
quality audio!

* [Blaauw and Bonada, 2016] used a vocoder representation to
train a generative model for speech synthesis

* [Engel et al., 2020] (DDSP) recently proposed the control of a
parametric model based on a deterministic autoencoder
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HpR

TAE

TAE

x(t)

CCH f0

CCR

Sinusoidal
Reconstruction

IFFT

Add x'(t)

Harmonic

Residual

h(t)
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TAE: [Caetano and Rodet, 2012, IMAI, 1979]

Subsampling rates: [Caetano and Rodet, 2013, Serra et al., 1997]
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Popular in Indian Music, Human voice-like timbre,

Ability to produce continuous pitch!

11 Instruments
MIDI pitch, velocity

Large Number

Individual Note/Scale recordings
Mezzo-forte, MIDI pitch

Initial Experiments
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Carnatic Violin Dataset

Why Violin?
Popular in Indian Music, Human voice-like timbre,

Ability to produce continuous pitch!

We record our own dataset!!
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Carnatic Violin Dataset

Carnatic Note Sa Ri1 Ri2 Ga2 Ga3 Ma1
Notation Sa Ri1 Ri2 Ga2 Ga3 Ma1
Carnatic Note Ma2 Pa Dha1 Dha2 Ni2 Ni3
Notation Ma2 Pa Dha1 Dha2 Ni2 Ni3

Description Notation

Octave Lower, Middle, Upper L, M, U
Loudness Soft, Loud So, Lo
Style Smooth, Attack Sm, At

1. Fixed Notes: 1143 s across 363 instances

2. Raga Recordings: 1075 s with 113 s Gamakas
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Gamakas?

I The subtle shadings of a tone, delicate nuances

and inflections around a note that please and

inspire the listener [Swift, 1990]

I Ornamentations/Deflections in pitch [SUBRAMANIAN, 2013]
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Network Architecture
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2. Dimensionality of latent space - networks reconstruction ability
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CVAE

I Similar network for Residual
I Hyperparameters optimized via MSE plots

1. β - tradeoff between reconstruction and prior enforcement

L ∝ MSE + β.KLD

2. Dimensionality of latent space - networks reconstruction ability
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Experiments

I 3 questions about our modeling pipeline:

1. Compatibility of our parametric model with violin audio
2. Why CVAE? Why not VAE or AE instead?
3. Coherently modeling harmonic and residual components

I De-mystify these one-by-one . . .



16/33

Experiments

I 3 questions about our modeling pipeline:

1. Compatibility of our parametric model with violin audio

2. Why CVAE? Why not VAE or AE instead?
3. Coherently modeling harmonic and residual components

I De-mystify these one-by-one . . .



16/33

Experiments

I 3 questions about our modeling pipeline:

1. Compatibility of our parametric model with violin audio
2. Why CVAE? Why not VAE or AE instead?

3. Coherently modeling harmonic and residual components

I De-mystify these one-by-one . . .



16/33

Experiments

I 3 questions about our modeling pipeline:

1. Compatibility of our parametric model with violin audio
2. Why CVAE? Why not VAE or AE instead?
3. Coherently modeling harmonic and residual components

I De-mystify these one-by-one . . .



16/33

Experiments

I 3 questions about our modeling pipeline:

1. Compatibility of our parametric model with violin audio
2. Why CVAE? Why not VAE or AE instead?
3. Coherently modeling harmonic and residual components

I De-mystify these one-by-one . . .



17/33

Parametric Model for Violin Audio

I [Beauchamp, 2017] → SF model for Violin

I Filter (Spectral Envelope) independent of Source (f0)?
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I [Beauchamp, 2017] states violin body (filter) has narrow
resonances

I f0 dependent Sub-sampling of harmonic spectral envelope
(KCC < Fs

f0
)

I Both the above lead to dependence of Harmonic spectral
envelop on pitch

I What about Residual envelope? Use constant sampling rate
as suggested in [Serra et al., 1997]
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Why CVAE?

I Harmonic spectral envelope depends on pitch

I Conditioning on pitch =⇒ Network captures dependencies
between the timbre and the pitch =⇒ More accurate
envelope generation + Pitch control

I For better understanding, we also visualize the latent space
using t-SNE [Maaten and Hinton, 2008]
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I Clear clustering without pitch conditioning =⇒ latent space
contains pitch information

I Pitch conditioning → optimal spectral envelope for that pitch

I What about residual spectral envelope?
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I Established 2 things so far . . .

1. Harmonic spectral envelope depends on the pitch =⇒ CVAE
models inter-dependencies

2. Residual spectral envelope does not depend on the pitch =⇒
No conditioning needed

I Quanititatively verify?

Reconstruction Experiments!!

Reconstruction?

- Omit pitch instances during training and reconstruct their
spectral envelopes

- Network’s generalization ability to unseen pitches
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I [Subramani et al., 2020] train on octave endpoints, and
reconstruct intermediate harmonic spectral envelopes
(Good-sounds)

MIDI 60 61 62 63 64 65
Kept X × × × × ×
MIDI 66 67 68 69 70 71
Kept × × × × × X

60 62 64 66 68 70 72

0.5

1

1.5

2

2.5
·10−2

Pitch

M
S

E

AE
CVAE

I Conditioning captures the
pitch dependency of the
spectral envelope more
accurately
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I Similar experiment with our Carnatic Violin dataset
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I Pitch conditioning → continuous pitch control
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I Pitch conditioning → continuous pitch control
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I Repeat reconstruction with these continuously varying pitch
contours, but only trained on the fixed pitch notes

1 4 2 5


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}


11.93793


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}


11.93793
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Joint Modeling of harmonic,residual

I Why jointly model?

- [Mathews and Kohut, 1973] ‘Resonant Enhancement’ →
Violin resonances filter String vibrations

- Harmonic (string vibrations) and residual (bow noise)
processed by same resonance =⇒ not independent
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I Harmonic and Residual envelopes could be dependent →
common underlying origin in the played loudness style of the
note

CVAEHCCH CCH
'

VAERCCR CCR
'

f0

Independent Modeling (INet)

CVAEC
CCH

f0

CCR

CCH
CCR

'

Concatenative Modeling (ConcatNet)

CVAES(CCH + CCR)
f0

(CCH + CCR)'CVAES(CCH + CCR) (CCH + CCR)'

CVAED(CCH - CCR)
f0

(CCH - CCR)'

Modeling sum and difference (JNet)
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I [Fletcher et al., 1965] mentions that the perceptual impact of
the residual is more for higher frequency notes than for lower
ones

I Harmonic MSE lower for INet

I Residual MSE lower for joint modeling

1 6 2 7


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}


null

3.8661292


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}


null

3.8661292
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Generation

I Interested in using network to ‘generate’ audio

Z

D
ec

o
d

er

f0

I How to sample points from Latent Space?
[Blaauw and Bonada, 2016] performs a random walk with
small step size

I Not a good enough emulation of temporal order of frames

1 8 2 9 3 10


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton7'){ocgs[i].state=false;}}


null

3.0563297


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton8'){ocgs[i].state=false;}}


null

3.0563297


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton9'){ocgs[i].state=false;}}


null

11.911808
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Listening Tests

I MSE not perceptually representative =⇒ Listening tests

I 2 Professionally trained (≈ 15 years) violinists
I Present audio examples, take subjective feedback

1. Reconstruction: Network reconstruction realistic, difficult to
differentiate from actual audio

2. Generation: Network generated audio not like a violin, sounds
synthetic, even with vibrato
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Putting it all together

X Autoencoder frameworks in generative models for audio
synthesis of instrumental tones

X A parametric representation decouples ‘timbre’ and ‘pitch’,
network models inter-dependencies

X Pitch conditioning allows generation of spectral envelope for
that pitch, thus enabling us to vary the pitch contour
continuously and obtain coherent envelopes (and thus audio!)

X Joint modeling can potentially help in modeling residual better

But . . .

× No temporality

× Network generated/synthesized audio not realistic
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Contributions
- Published and presented work in ICASSP 2020, ISMIR 2019

and submitted work to ISMIR 2020
[Subramani et al., 2020, Subramani et al., 2019]

- Dataset + Code open source on GitHub23

- GUI for researchers to better understand our research

2https://github.com/SubramaniKrishna/VaPar-Synth
3https://github.com/SubramaniKrishna/HpRNet

https://github.com/SubramaniKrishna/VaPar-Synth
https://github.com/SubramaniKrishna/HpRNet
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- Dataset + Code open source on GitHub23

- GUI for researchers to better understand our research 1 11

2https://github.com/SubramaniKrishna/VaPar-Synth
3https://github.com/SubramaniKrishna/HpRNet


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton10'){ocgs[i].state=false;}}


null

26.618916

https://github.com/SubramaniKrishna/VaPar-Synth
https://github.com/SubramaniKrishna/HpRNet
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Audio examples description I

1. Original Sa note

2. Original Sa note harmonic

3. Original Sa note residual

4. Harmonic version of Gamaka

5. Network reconstruction of harmonic version of Gamaka

6. Upper Octave Ri1 recording

7. Upper Octave Ri1 INet reconstruction

8. Network Generated Upper octave Ri2

9. Network Generated Upper octave Ri2 with vibrato

10. Network Generated Gamaka

11. Bohemian Rhapsody Guitar ‘Rendered’ by our network
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