Variational Parametric Models for Audio Synthesis

> Krishna Subramani Guide: Prof. Preeti Rao

Department of Electrical Engineering IIT Bombay, India

DDP Presentation

Audio Synthesis

 \blacktriangleright timbre \rightarrow "difference" between a violin and flute A4

- \blacktriangleright timbre \rightarrow "difference" between a violin and flute A4
- pitch \rightarrow fundamental frequency

- \blacktriangleright timbre \rightarrow "difference" between a violin and flute A4
- pitch \rightarrow fundamental frequency
- ► loudness → intensity (energy)

Audio Synthesis

Audio Synthesis

Audio Synthesis

▶ Introduced by [Serra, 1989, Serra et al., 1997]

- ▶ Introduced by [Serra, 1989, Serra et al., 1997]
- Idea is: $\mathbf{x} = \mathbf{x}_{sine} + \mathbf{x}_{noise} = h(t) + r(t)$

▶ Introduced by [Serra, 1989, Serra et al., 1997]

• Idea is:
$$\mathbf{x} = \mathbf{x}_{sine} + \mathbf{x}_{noise} = h(t) + r(t)$$

- ▶ Introduced by [Serra, 1989, Serra et al., 1997]
- Idea is: $\mathbf{x} = \mathbf{x}_{sine} + \mathbf{x}_{noise} = h(t) + r(t)$

$$1^{1}$$
 2^{2} 3^{3}

▶ Introduced by [Serra, 1989, Serra et al., 1997]

• Idea is:
$$\mathbf{x} = \mathbf{x}_{sine} + \mathbf{x}_{noise} = h(t) + r(t)$$

 Our parametric representation is a Source-Filter inspired representation, building on top of the HpR model [Caetano and Rodet, 2012, Caetano and Rodet, 2013]

¹https://openai.com/blog/generative-models/

 Compact representation of data space¹, simultaneously allowing us to sample from it

¹https://openai.com/blog/generative-models/

- Compact representation of data space¹, simultaneously allowing us to sample from it
- ► This 'Compact' representation → Latent Space

¹https://openai.com/blog/generative-models/

- Compact representation of data space¹, simultaneously allowing us to sample from it
- ▶ This 'Compact' representation \rightarrow Latent Space

¹https://openai.com/blog/generative-models/

- Compact representation of data space¹, simultaneously allowing us to sample from it
- ▶ This 'Compact' representation \rightarrow Latent Space
- Neural Audio Synthesis [Engel et al., 2017]

¹https://openai.com/blog/generative-models/

 Sequential/Autoregressive Modeling: LSTMs, WaveNet [Hochreiter and Schmidhuber, 1997, Oord et al., 2016]

- Sequential/Autoregressive Modeling: LSTMs, WaveNet [Hochreiter and Schmidhuber, 1997, Oord et al., 2016]
- Generative Adversarial Networks [Goodfellow et al., 2014]

- Sequential/Autoregressive Modeling: LSTMs, WaveNet [Hochreiter and Schmidhuber, 1997, Oord et al., 2016]
- Generative Adversarial Networks [Goodfellow et al., 2014]
- Framewise Autoencoding

- Sequential/Autoregressive Modeling: LSTMs, WaveNet [Hochreiter and Schmidhuber, 1997, Oord et al., 2016]
- Generative Adversarial Networks [Goodfellow et al., 2014]
- Framewise Autoencoding
 - Autoencoders (AE) [Hinton and Salakhutdinov, 2006] Optimal (MSE) lower dimensional representation of input

- Sequential/Autoregressive Modeling: LSTMs, WaveNet [Hochreiter and Schmidhuber, 1997, Oord et al., 2016]
- Generative Adversarial Networks [Goodfellow et al., 2014]
- Framewise Autoencoding
 - Autoencoders (AE) [Hinton and Salakhutdinov, 2006] Optimal (MSE) lower dimensional representation of input
 - Variational AEs (VAE) [Kingma and Welling, 2013] Enforce a prior on the lower dimensional representation

- Sequential/Autoregressive Modeling: LSTMs, WaveNet [Hochreiter and Schmidhuber, 1997, Oord et al., 2016]
- Generative Adversarial Networks [Goodfellow et al., 2014]
- Framewise Autoencoding
 - Autoencoders (AE) [Hinton and Salakhutdinov, 2006] Optimal (MSE) lower dimensional representation of input
 - Variational AEs (VAE) [Kingma and Welling, 2013] Enforce a prior on the lower dimensional representation
 - Conditional VAEs (CVAE) [Doersch, 2016, Sohn et al., 2015] Enforce a 'conditional' prior ...

 [Sarroff and Casey, 2014] frame-wise reconstruction of short-time magnitude spectra with autoencoders

 [Sarroff and Casey, 2014] frame-wise reconstruction of short-time magnitude spectra with autoencoders

 [Sarroff and Casey, 2014] frame-wise reconstruction of short-time magnitude spectra with autoencoders

[Roche et al., 2018] tried out autoencoder architectures, analysis of 'audio latent space'

 [Sarroff and Casey, 2014] frame-wise reconstruction of short-time magnitude spectra with autoencoders

- [Roche et al., 2018] tried out autoencoder architectures, analysis of 'audio latent space'
- [Esling et al., 2018] regularized this latent space for better control over timbre of synthesized instruments

► Frame-wise analysis-synthesis based reconstruction → no temporality and phase estimation issues

- ► Frame-wise analysis-synthesis based reconstruction → no temporality and phase estimation issues
- [Engel et al., 2017] inspired by Wavenets [Oord et al., 2016] autoregressive modeling capabilities for speech extended it to musical instrument synthesis

- ► Frame-wise analysis-synthesis based reconstruction → no temporality and phase estimation issues
- [Engel et al., 2017] inspired by Wavenets [Oord et al., 2016] autoregressive modeling capabilities for speech extended it to musical instrument synthesis
- [Wyse, 2018] proposed generating audio samples with RNN's, albeit by conditioning the waveform samples on additional parameters like pitch, velocity (loudness) and instrument class
Our Nearest Neighbors

- ► Frame-wise analysis-synthesis based reconstruction → no temporality and phase estimation issues
- [Engel et al., 2017] inspired by Wavenets [Oord et al., 2016] autoregressive modeling capabilities for speech extended it to musical instrument synthesis
- [Wyse, 2018] proposed generating audio samples with RNN's, albeit by conditioning the waveform samples on additional parameters like pitch, velocity (loudness) and instrument class
- [Défossez et al., 2018] proposed frame-by-frame waveform generation with LSTMs

Mostly use audio in raw form (waveform/spectrum)

- waveform: Complicated architectures, lots of training data, long training times
- spectrum: Phase estimation

Mostly use audio in raw form (waveform/spectrum)

- waveform: Complicated architectures, lots of training data, long training times
- spectrum: Phase estimation

Parametric?

Mostly use audio in raw form (waveform/spectrum)

- waveform: Complicated architectures, lots of training data, long training times
- spectrum: Phase estimation
- Parametric?
 - model a reduced parameter space over waveform/spectrum
 - neural network to generatively model parametric space \rightarrow simple architecture, less data, better generalizability and high quality audio!

Mostly use audio in raw form (waveform/spectrum)

- waveform: Complicated architectures, lots of training data, long training times
- spectrum: Phase estimation
- Parametric?
 - model a reduced parameter space over waveform/spectrum
 - neural network to generatively model parametric space \rightarrow simple architecture, less data, better generalizability and high quality audio!
 - * [Blaauw and Bonada, 2016] used a vocoder representation to train a generative model for speech synthesis
 - * [Engel et al., 2020] (DDSP) recently proposed the control of a parametric model based on a deterministic autoencoder

x(t)

TAE: [Caetano and Rodet, 2012, IMAI, 1979]

Subsampling rates: [Caetano and Rodet, 2013, Serra et al., 1997]

Datasets

Why **Violin?** Popular in Indian Music, Human voice-like timbre, Ability to produce continuous pitch!

11 Instruments MIDI pitch, velocity Large Number Datasets NSynth

Why **Violin?** Popular in Indian Music, Human voice-like timbre, Ability to produce continuous pitch!

Why **Violin?** Popular in Indian Music, Human voice-like timbre, Ability to produce continuous pitch!

Why insufficient? MIDI pitches, not Carnatic notes Not Expressive!

Carnatic Violin Dataset

Carnatic Note	Sa	Ri ₁	Ri ₂	Ga ₂	Ga_3	Ma ₁		Description	Notation
Notation	Sa	Ri1	Ri2	Ga2	Ga3	Ma1	Octave	Lower, Middle, Upper	L, M, U
Carnatic Note	Ma ₂	Pa	Dha ₁	Dha ₂	Ni ₂	Ni ₃	Loudness	Soft, Loud	So, Lo
Notation	Ma2	Pa	Dha1	Dha2	Ni2	Ni3	Style	Smooth, Attack	Sm, At

- 1. Fixed Notes: 1143 s across 363 instances
- 2. Raga Recordings: 1075 s with 113 s Gamakas

Carnatic Violin Dataset

Carnatic Note	Sa	Ri ₁	Ri ₂	Ga ₂	Ga_3	Ma ₁]		Description	Notation
Notation	Sa	Ri1	Ri2	Ga2	Ga3	Ma1]	Octave	Lower, Middle, Upper	L, M, U
Carnatic Note	Ma_2	Pa	Dha ₁	Dha ₂	Ni ₂	Ni ₃	1	Loudness	Soft, Loud	So, Lo
Notation	Ma2	Pa	Dha1	Dha2	Ni2	Ni3]	Style	Smooth, Attack	Sm, At

- 1. Fixed Notes: 1143 s across 363 instances
- 2. Raga Recordings: 1075 s with 113 s Gamakas

Gamakas?

- The subtle shadings of a tone, delicate nuances and inflections around a note that please and inspire the listener [Swift, 1990]
- Ornamentations/Deflections in pitch [SUBRAMANIAN, 2013]

Network Architecture

- Similar network for Residual
- Hyperparameters optimized via MSE plots
 - 1. β tradeoff between reconstruction and prior enforcement
 - 2. Dimensionality of latent space networks reconstruction ability

Network Architecture

- Similar network for Residual
- Hyperparameters optimized via MSE plots

- 1. β tradeoff between reconstruction and prior enforcement
- 2. Dimensionality of latent space networks reconstruction ability

▶ 3 questions about our modeling pipeline:

▶ 3 questions about our modeling pipeline:

1. Compatibility of our parametric model with violin audio

▶ 3 questions about our modeling pipeline:

- 1. Compatibility of our parametric model with violin audio
- 2. Why CVAE? Why not VAE or AE instead?

- ▶ 3 questions about our modeling pipeline:
 - 1. Compatibility of our parametric model with violin audio
 - 2. Why CVAE? Why not VAE or AE instead?
 - 3. Coherently modeling harmonic and residual components

- 3 questions about our modeling pipeline:
 - 1. Compatibility of our parametric model with violin audio
 - 2. Why CVAE? Why not VAE or AE instead?
 - 3. Coherently modeling harmonic and residual components
- De-mystify these one-by-one ...

Parametric Model for Violin Audio

▶ [Beauchamp, 2017] \rightarrow SF model for Violin

Parametric Model for Violin Audio

- ▶ [Beauchamp, 2017] \rightarrow SF model for Violin
- Filter (Spectral Envelope) independent of Source (f_0) ?

Parametric Model for Violin Audio

- ▶ [Beauchamp, 2017] \rightarrow SF model for Violin
- ▶ Filter (Spectral Envelope) independent of Source (f₀)?

Harmonic Spectral Envelopes

[Beauchamp, 2017] states violin body (filter) has narrow resonances
[Beauchamp, 2017] states violin body (filter) has narrow resonances

• f_0 dependent Sub-sampling of harmonic spectral envelope $(K_{CC} < \frac{F_s}{f_0})$

- [Beauchamp, 2017] states violin body (filter) has narrow resonances
- f_0 dependent Sub-sampling of harmonic spectral envelope $(K_{CC} < \frac{F_s}{f_0})$
- Both the above lead to dependence of Harmonic spectral envelop on pitch

- [Beauchamp, 2017] states violin body (filter) has narrow resonances
- ▶ f₀ dependent Sub-sampling of harmonic spectral envelope (K_{CC} < ^{F_s}/_{f₀})
- Both the above lead to dependence of Harmonic spectral envelop on pitch
- What about Residual envelope? Use constant sampling rate as suggested in [Serra et al., 1997]

- [Beauchamp, 2017] states violin body (filter) has narrow resonances
- f_0 dependent Sub-sampling of harmonic spectral envelope $(K_{CC} < \frac{F_s}{f_0})$
- Both the above lead to dependence of Harmonic spectral envelop on pitch
- What about Residual envelope? Use constant sampling rate as suggested in [Serra et al., 1997]

Residual Spectral Envelopes

Why CVAE?

- Harmonic spectral envelope depends on pitch
- Conditioning on pitch => Network captures dependencies between the timbre and the pitch => More accurate envelope generation + Pitch control
- For better understanding, we also visualize the latent space using t-SNE [Maaten and Hinton, 2008]

Harmonic CVAE Latent Spaces without and with f_{0} conditioning

Harmonic CVAE Latent Spaces without and with $f_{\rm 0}$ conditioning

 \blacktriangleright Clear clustering without pitch conditioning \implies latent space contains pitch information

Harmonic CVAE Latent Spaces without and with $f_{\rm 0}$ conditioning

- Clear clustering without pitch conditioning contains pitch information
- \blacktriangleright Pitch conditioning \rightarrow optimal spectral envelope for that pitch

Harmonic CVAE Latent Spaces without and with $f_{\rm 0}$ conditioning

- Clear clustering without pitch conditioning contains pitch information
- \blacktriangleright Pitch conditioning \rightarrow optimal spectral envelope for that pitch
- What about residual spectral envelope?

Residual VAE Latent Spaces without and with $f_{\rm 0}$ conditioning

Residual VAE Latent Spaces without and with $f_0\ensuremath{\text{ conditioning}}$

Matches with previous plots of spectral envelope

Residual VAE Latent Spaces without and with $f_0\ensuremath{\text{ conditioning}}$

- Matches with previous plots of spectral envelope
- No conditioning needed for the residual network!

- Established 2 things so far ...
 - 1. Harmonic spectral envelope depends on the pitch \implies CVAE models inter-dependencies

- Established 2 things so far ...
 - 1. Harmonic spectral envelope depends on the pitch \implies CVAE models inter-dependencies
 - 2. Residual spectral envelope does not depend on the pitch \implies No conditioning needed

- Established 2 things so far ...
 - 1. Harmonic spectral envelope depends on the pitch \implies CVAE models inter-dependencies
 - 2. Residual spectral envelope does not depend on the pitch \implies No conditioning needed
- Quanititatively verify?

- Established 2 things so far ...
 - 1. Harmonic spectral envelope depends on the pitch \implies CVAE models inter-dependencies
 - 2. Residual spectral envelope does not depend on the pitch \implies No conditioning needed
- Quanititatively verify? Reconstruction Experiments!!

- Established 2 things so far ...
 - 1. Harmonic spectral envelope depends on the pitch \implies CVAE models inter-dependencies
 - 2. Residual spectral envelope does not depend on the pitch \implies No conditioning needed
- Quanititatively verify? Reconstruction Experiments!!

Reconstruction?

- Established 2 things so far ...
 - 1. Harmonic spectral envelope depends on the pitch \implies CVAE models inter-dependencies
 - 2. Residual spectral envelope does not depend on the pitch \implies No conditioning needed
- Quanititatively verify? Reconstruction Experiments!!

Reconstruction?

- Omit pitch instances during training and reconstruct their spectral envelopes

- Established 2 things so far ...
 - 1. Harmonic spectral envelope depends on the pitch \implies CVAE models inter-dependencies
 - 2. Residual spectral envelope does not depend on the pitch \implies No conditioning needed
- Quanititatively verify? Reconstruction Experiments!!

Reconstruction?

- Omit pitch instances during training and reconstruct their spectral envelopes
- Network's generalization ability to unseen pitches

 [Subramani et al., 2020] train on octave endpoints, and reconstruct intermediate harmonic spectral envelopes (Good-sounds)

MIDI	60	61	62	63	64	65
Kept	\checkmark	×	×	×	×	×
MIDI	66	67	68	69	70	71
Kept	×	×	×	\times	×	\checkmark

 Conditioning captures the pitch dependency of the spectral envelope more accurately

Similar experiment with our Carnatic Violin dataset

Repeat reconstruction with these continuously varying pitch contours, but only trained on the fixed pitch notes

Why jointly model?

- Why jointly model?
 - [Mathews and Kohut, 1973] 'Resonant Enhancement' \rightarrow Violin resonances filter String vibrations

- Why jointly model?
 - [Mathews and Kohut, 1973] 'Resonant Enhancement' \rightarrow Violin resonances filter String vibrations
 - Harmonic (string vibrations) and residual (bow noise) processed by same resonance \implies not independent

- Why jointly model?
 - [Mathews and Kohut, 1973] 'Resonant Enhancement' \rightarrow Violin resonances filter String vibrations
 - Harmonic (string vibrations) and residual (bow noise) processed by same resonance ⇒ not independent

- Why jointly model?
 - [Mathews and Kohut, 1973] 'Resonant Enhancement' \rightarrow Violin resonances filter String vibrations
 - Harmonic (string vibrations) and residual (bow noise) processed by same resonance ⇒ not independent

 \blacktriangleright Harmonic and Residual envelopes could be dependent \rightarrow common underlying origin in the played loudness style of the note

$$CC_{H} \longrightarrow CC_{H}^{f_{0}} CC_{H} \longrightarrow CC_{H}^{i}$$

$$CC_{R} \longrightarrow CC_{R}^{i} \longrightarrow CC_{R}^{i}$$

Independent Modeling (INet)

Concatenative Modeling (ConcatNet)

$$(CC_{H} + CC_{R}) \longrightarrow \stackrel{f_{0}}{CVAE_{S}} (CC_{H} + CC_{R})'$$

$$(CC_{H} - CC_{R}) \longrightarrow \stackrel{f_{0}}{CVAE_{D}} (CC_{H} - CC_{R})'$$

Modeling sum and difference (JNet)

- [Fletcher et al., 1965] mentions that the perceptual impact of the residual is more for higher frequency notes than for lower ones
- Harmonic MSE lower for INet
- Residual MSE lower for joint modeling

1 6 2 7

Generation

Interested in using network to 'generate' audio

- How to sample points from Latent Space? [Blaauw and Bonada, 2016] performs a random walk with small step size
- Not a good enough emulation of temporal order of frames $\begin{array}{c|c}
 1 & 2 & 9 \\
 \hline
 3 & 1^{0}
 \end{array}$
\blacktriangleright MSE not perceptually representative \implies Listening tests

- \blacktriangleright MSE not perceptually representative \implies Listening tests
- ▶ 2 Professionally trained (\approx 15 years) violinists

- \blacktriangleright MSE not perceptually representative \implies Listening tests
- ▶ 2 Professionally trained (\approx 15 years) violinists
- Present audio examples, take subjective feedback

- MSE not perceptually representative \implies Listening tests
- ▶ 2 Professionally trained (\approx 15 years) violinists
- Present audio examples, take subjective feedback
 - 1. Reconstruction: Network reconstruction realistic, difficult to differentiate from actual audio

- MSE not perceptually representative \implies Listening tests
- ▶ 2 Professionally trained (\approx 15 years) violinists
- Present audio examples, take subjective feedback
 - 1. Reconstruction: Network reconstruction realistic, difficult to differentiate from actual audio
 - 2. Generation: Network generated audio not like a violin, sounds synthetic, even with vibrato

✓ Autoencoder frameworks in generative models for audio synthesis of instrumental tones

 Autoencoder frameworks in generative models for audio synthesis of instrumental tones

✓ A parametric representation decouples 'timbre' and 'pitch', network models inter-dependencies

- Autoencoder frameworks in generative models for audio synthesis of instrumental tones
- ✓ A parametric representation decouples 'timbre' and 'pitch', network models inter-dependencies
- ✓ Pitch conditioning allows generation of spectral envelope for that pitch, thus enabling us to vary the pitch contour continuously and obtain coherent envelopes (and thus audio!)

- Autoencoder frameworks in generative models for audio synthesis of instrumental tones
- ✓ A parametric representation decouples 'timbre' and 'pitch', network models inter-dependencies
- ✓ Pitch conditioning allows generation of spectral envelope for that pitch, thus enabling us to vary the pitch contour continuously and obtain coherent envelopes (and thus audio!)

 $\checkmark\,$ Joint modeling can potentially help in modeling residual better But \ldots

- Autoencoder frameworks in generative models for audio synthesis of instrumental tones
- ✓ A parametric representation decouples 'timbre' and 'pitch', network models inter-dependencies
- ✓ Pitch conditioning allows generation of spectral envelope for that pitch, thus enabling us to vary the pitch contour continuously and obtain coherent envelopes (and thus audio!)

 $\checkmark\,$ Joint modeling can potentially help in modeling residual better But \ldots

× No temporality

- Autoencoder frameworks in generative models for audio synthesis of instrumental tones
- ✓ A parametric representation decouples 'timbre' and 'pitch', network models inter-dependencies
- ✓ Pitch conditioning allows generation of spectral envelope for that pitch, thus enabling us to vary the pitch contour continuously and obtain coherent envelopes (and thus audio!)

 $\checkmark\,$ Joint modeling can potentially help in modeling residual better But \ldots

- × No temporality
- × Network generated/synthesized audio not realistic

Contributions

- Published and presented work in ICASSP 2020, ISMIR 2019 and submitted work to ISMIR 2020 [Subramani et al., 2020, Subramani et al., 2019]
- Dataset + Code open source on $GitHub^{23}$

²https://github.com/SubramaniKrishna/VaPar-Synth ³https://github.com/SubramaniKrishna/HpRNet

Contributions

- Published and presented work in ICASSP 2020, ISMIR 2019 and submitted work to ISMIR 2020 [Subramani et al., 2020, Subramani et al., 2019]
- Dataset + Code open source on $GitHub^{23}$
- GUI for researchers to better understand our research 1^{11}

Va	Par Synth GUI	● 🛛 😣
fixedP varP Pitch Synthesis		
.pth file for the Harmonic Component		
Choice of Synthesis/Generation	VibratoP	
Input Pitch File (.wav, mono and 44100 sampling rate):		
	Browse >	PYin Pitch
Duration of Note (s):	5	
Vibrato Centre frequency (Hz):	400	
Vibrato Depth (% of fc):	1	
Vibrato Frequency (Hz):	5	
Compute		
Network Generated Audio:	>	

²https://github.com/SubramaniKrishna/VaPar-Synth ³https://github.com/SubramaniKrishna/HpRNet

References |

[Beauchamp, 2017] Beauchamp, J. W. (2017). Comparison of vocal and violin vibrato with relationship to the source/filter model. In Studies in Musical Acoustics and Psychoacoustics, pages 201–221. Springer.

[Blaauw and Bonada, 2016] Blaauw, M. and Bonada, J. (2016). Modeling and transforming speech using variational autoencoders. In *Interspeech*, pages 1770–1774.

 [Caetano and Rodet, 2012] Caetano, M. and Rodet, X. (2012).
A source-filter model for musical instrument sound transformation.
In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 137–140. IEEE.

[Caetano and Rodet, 2013] Caetano, M. and Rodet, X. (2013). Musical instrument sound morphing guided by perceptually motivated features. IEEE Transactions on Audio, Speech, and Language Processing, 21(8):1666–1675.

 [Défossez et al., 2018] Défossez, A., Zeghidour, N., Usunier, N., Bottou, L., and Bach, F. (2018).
Sing: Symbol-to-instrument neural generator. In Advances in Neural Information Processing Systems, pages 9041–9051.

[Doersch, 2016] Doersch, C. (2016). Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908.

References II

[Engel et al., 2020] Engel, J., Hantrakul, L., Gu, C., and Roberts, A. (2020). Ddsp: Differentiable digital signal processing. arXiv preprint arXiv:2001.04643.

[Engel et al., 2017] Engel, J., Resnick, C., Roberts, A., Dieleman, S., Norouzi, M., Eck, D., and Simonyan, K. (2017).

Neural audio synthesis of musical notes with wavenet autoencoders.

In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1068–1077. JMLR. org.

[Esling et al., 2018] Esling, P., Bitton, A., et al. (2018).

Generative timbre spaces: regularizing variational auto-encoders with perceptual metrics.

arXiv preprint arXiv:1805.08501.

[Fletcher et al., 1965] Fletcher, H., Blackham, E. D., and Geertsen, O. N. (1965). Quality of violin, viola, 'cello, and bass-viol tones. i. The Journal of the Acoustical Society of America, 37(5):851–863.

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets.

In Advances in neural information processing systems, pages 2672-2680.

References III

[Hinton and Salakhutdinov, 2006] Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. *science*, 313(5786):504–507.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–1780.

[IMAI, 1979] IMAI, S. (1979).

Spectral envelope extraction by improved cepstrum. *IEICE*, 62:217–228.

[Kingma and Welling, 2013] Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*.

[Maaten and Hinton, 2008] Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne.

Journal of machine learning research, 9(Nov):2579–2605.

[Mathews and Kohut, 1973] Mathews, M. V. and Kohut, J. (1973). Electronic simulation of violin resonances.

The Journal of the Acoustical Society of America, 53(6):1620–1626.

References IV

 [Oord et al., 2016] Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016).
Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499.

[Roche et al., 2018] Roche, F., Hueber, T., Limier, S., and Girin, L. (2018). Autoencoders for music sound modeling: a comparison of linear, shallow, deep, recurrent and variational models. arXiv preprint arXiv:1806.04096.

[Sarroff and Casey, 2014] Sarroff, A. M. and Casey, M. A. (2014). Musical audio synthesis using autoencoding neural nets. In *ICMC*.

[Serra, 1989] Serra, X. (1989).

A system for sound analysis/transformation/synthesis based on a deterministic plus stochastic decomposition.

Ph.D. Thesis, Stanford University.

[Serra et al., 1997] Serra, X. et al. (1997). Musical sound modeling with sinusoids plus noise. Musical signal processing, pages 91–122.

References V

[Sohn et al., 2015] Sohn, K., Lee, H., and Yan, X. (2015).

Learning structured output representation using deep conditional generative models.

In Advances in neural information processing systems, pages 3483-3491.

[Subramani et al., 2019] Subramani, K., D'Hooge, A., and Rao, P. (2019). Generative audio synthesis with a parametric model. arXiv preprint arXiv:1911.08335.

 [Subramani et al., 2020] Subramani, K., Rao, P., and D'Hooge, A. (2020).
Vapar synth - a variational parametric model for audio synthesis.
In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 796–800.

[SUBRAMANIAN, 2013] SUBRAMANIAN, S. K. (2013).

Modelling gamakas of carnatic music as a synthesizer for sparse prescriptive notation.

[Swift, 1990] Swift, G. N. (1990).South indian "gamaka" and the violin.Asian Music, 21(2):71–89.

[Wyse, 2018] Wyse, L. (2018).

Real-valued parametric conditioning of an rnn for interactive sound synthesis. *arXiv preprint arXiv:1805.10808*.

Audio examples description |

- 1. Original Sa note
- 2. Original Sa note harmonic
- 3. Original Sa note residual
- 4. Harmonic version of Gamaka
- 5. Network reconstruction of harmonic version of Gamaka
- 6. Upper Octave Ri1 recording
- 7. Upper Octave Ri1 INet reconstruction
- 8. Network Generated Upper octave Ri2
- 9. Network Generated Upper octave Ri2 with vibrato
- 10. Network Generated Gamaka
- 11. Bohemian Rhapsody Guitar 'Rendered' by our network